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1/3/23. Fill in the circles to the right with the numbers
1 through 16 so that each number is used once (the
number 1 has been filled in already). The number in
any non-circular region is equal to the greatest differ-
ence between any two numbers in the circles on that
region’s vertices.

You do not need to prove that your configuration is
the only one possible; you merely need to find a valid
configuration. (Note: In any other USAMTS problem,
you need to provide a full proof. Only in this problem
is an answer without justification acceptable.)
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First, we point out that if a triangular region contains the
number 2, then the three vertices for the region must contain
three consecutive numbers. In particular, if we look at the top-
left region of the diagram, as in the figure to the right, then we see
that both {A,B,D} and {C,D,E} must be sets of consecutive
numbers, in some order. Since the greatest difference between
two elements in the set {1, A,D} is 8, and the smallest element
is 1, A or D must be equal to 9.

Also, the greatest difference between two elements in the set
{1, C,D} is 7, so D cannot be 9, which means A = 9 and D ≤ 8. Also, C or D must be
equal to 8. If C = 8, then D ≤ 7, but then {A,B,D} cannot contain three consecutive
numbers, so we must have D = 8. We know the set {C,D,E} = {C, 8, E} must contain
three consecutive numbers, and none of the elements are 9, so {C,E} = {6, 7} in some order.
The set {A,B,D} = {9, B, 8} contains three consecutive numbers, and B cannot be 7, so
B = 10.
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Now we have the figure to the left, where C and E are 6 and
7 in some order. We will call a number small if it is in the set
{2, 3, 4, 5}, and we will call a number large if it is in the set

{11, 12, 13, 14, 15, 16}.

The unlabeled circles contain exactly those numbers that are
either small or large. There are 4 small numbers and 6 large
numbers.

Consider the numbers in the four vertices of the bottom-left square containing the number
4, including E. Since E is at most 7, and all these numbers are within 4 of each other, all
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three of the remaining numbers must be small. There is one more small number elsewhere
in the grid. Now consider the numbers in the four vertices of the top-right square containing
the number 11. Two of these numbers differ by 11, so they cannot be only 10 and large
numbers. Hence, one of these numbers must be small. Also, the difference between two of
these numbers is 11, but neither of these numbers can be the 10. Thus, we can replace the
square containing the number 11 with a triangle containing the number 11, as shown below.
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We can do the same for the center square containing the
number 10. Among the four numbers attached to this square,
two of them differ by 10. Neither of these numbers can be the
8, so we can replace the square containing the number 10 with
a triangle containing the number 10, as shown to the right. We
let F , G, and H be the three small numbers in the lower-left.

Next, consider the triangles labeled 2, 4, and 5 in the right
side of the figure. Since the smallest difference between a small
number and a large number is 11 − 5 = 6, the five numbers
attached to these triangles are either all large or all small. Since there are only four small
numbers, all five of these numbers must be large. Let these five numbers be V , W , X, Y ,
and Z, as in the figure below. The final two vertices contain the one remaining small number
and one remaining large number. We label these two vertices S and T .
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We have the following:

{C,E} = {6, 7}
{F,G,H} ⊂ {2, 3, 4, 5}

{V,W,X, Y, Z} ⊂ {11, 12, 13, 14, 15, 16}

Either S is small and T is big, or T is small and S is big.
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Consider the numbers W , Y , and Z. We know that the dif-
ference between two of these numbers is 5. But these numbers
are all large, and the only way that the difference between two
large numbers is 5 is if the numbers are 11 and 16. Suppose W
or Y is equal to 16. We know that the greatest difference among
the numbers H, W , and Y is 8, which means H must be equal
to 8. However, we have already used 8, so neither W nor Y can
be 16, which means Z = 16. Then W or Y is equal to 11. We
know that the greatest difference among the numbers X, W , and
Z (which is 16) is 4, so W cannot be 11, which means Y = 11.
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It also follows that W or X is equal to 12. We know that the greatest difference among
the numbers V , W , and X is 2, so these three numbers are consecutive. Also, all of these
numbers are large, and we have already used 11, so these numbers are 12, 13, and 14, in some
order. Therefore, the remaining large number must be 15. We know that one of M and N
is the remaining large number, and the other is the remaining small number. Furthermore,
these numbers differ by 11, so the remaining small number is 15− 11 = 4.

Hence, the small numbers F , G, and H are 2, 3, and 5, in some order. We know that
the greatest difference among the numbers E, F , G, and H is 4. But the largest number is
E, and the smallest number is 2, so E − 2 = 4, which means E = 6. Then C = 7.

1 9 10 T

7 8 S V

6 F W X

G H 11 16

7

8 2

11

2

10 2

4
8 5

4

Now consider the numbers W , H, and Y = 11. We know
that the greatest difference among these numbers is 8. Since W
is either 12, 13, or 14, and H is 2, 3, or 5, the greatest difference
among these numbers is W − H. Furthermore, the only values
that satisfy W −H = 8 are W = 13 and H = 5.

Then X is 12 or 14. But the greatest difference among the
numbers W = 13, X, and Z = 16 is 4, so X = 12, which makes
V = 14.
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Finally, F and G are 2 and 3 in some order, and M and N
are 4 and 15 in some order. The greatest difference among F , N ,
and W = 13 is 10. By a quick check, the only values for which
this occurs are F = 3 and N = 4. Then G = 2 and M = 15,
which completes the grid.
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2/3/23. Let x be a complex number such that x2011 = 1 and x 6= 1. Compute the sum

x2

x− 1
+

x4

x2 − 1
+

x6

x3 − 1
+ · · · +

x4020

x2010 − 1
.

Let S denote the given sum, so

S =
x2

x− 1
+

x4

x2 − 1
+ · · ·+ x4020

x2010 − 1
=

2010∑
k=1

x2k

xk − 1
. (1)

We can reverse the order of the terms, to get

S =
x4020

x2010 − 1
+

x4018

x2009 − 1
+ · · ·+ x2

x− 1
=

2010∑
k=1

x4022−2k

x2011−k − 1
.

Since x2011 = 1,
x4022−2k

x2011−k − 1
=

x−2k

x−k − 1
=

1

xk − x2k
=

1

xk(1− xk)
,

so

S =
2010∑
k=1

1

xk(1− xk)
. (2)

Adding equations (1) and (2), we get

2S =
2010∑
k=1

x2k

xk − 1
+

2010∑
k=1

1

xk(1− xk)

=
2010∑
k=1

[
x2k

xk − 1
+

1

xk(1− xk)

]

=
2010∑
k=1

[
x3k

xk(xk − 1)
− 1

xk(xk − 1)

]

=
2010∑
k=1

x3k − 1

xk(xk − 1)
.
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We can factor x3k − 1 as (xk − 1)(x2k + xk + 1), so

2S =
2010∑
k=1

(xk − 1)(x2k + xk + 1)

xk(xk − 1)

=
2010∑
k=1

x2k + xk + 1

xk

=
2010∑
k=1

(
xk + 1 +

1

xk

)
=

(
x+ 1 +

1

x

)
+

(
x2 + 1 +

1

x2

)
+ · · ·+

(
x2010 + 1 +

1

x2010

)
= (x+ x2 + · · ·+ x2010) + 2010 +

1

x
+

1

x2
+ · · ·+ 1

x2010
.

Since x2011 = 1, we have that x2011 − 1 = 0, which factors as

(x− 1)(x2010 + x2009 + · · ·+ x+ 1) = 0.

We know that x 6= 1, so we can divide both sides by x− 1, to get

x2010 + x2009 + · · ·+ x+ 1 = 0.

Then

2S = (x+ x2 + · · ·+ x2010) + 2010 +
1

x
+

1

x2
+ · · ·+ 1

x2010

= (x+ x2 + · · ·+ x2010) + 2010 +
x2010 + x2009 + · · ·+ x

x2011

= (−1) + 2010 +
−1

1
= 2008,

so S = 1004.
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3/3/23. A long, 1-inch wide strip of cloth can be folded into the figure below.

When the cloth is pulled tight and flattened, the result is a knot with two trailing strands.
The knot has outer boundary equal to a regular pentagon as shown below.

Instead, a long 1-inch wide strip of cloth is folded into the next figure, following the given
turns and crossings.

When the cloth is pulled tight and flattened, the result is a knot with two trailing strands.
The knot has outer boundary equal to a regular heptagon. The trailing strands of the
heptagonal knot are both cut at the outer (heptagonal) boundary of the knot. Then the
knot is untied. What is the area of one side of the resulting quadrilateral of cloth? (Your
answer may contain trigonometric expressions.)

We are given that the knot, when pulled tight, forms a regular heptagon
(with two trailing strands). This tells us that the angles at each crease will all
be the interior angles of a heptagon, 5π

7
. The piece of cloth between two creases

(when the strip is unfolded) is then forced to be an isosceles trapezoid with
acute angles 2π

7
, and whose legs are equal to the short base. Furthermore, the height of each

trapezoid is equal to the width of the cloth, namely 1 inch.

5π
7

5π
7

2π
7

2π
7

When the trailing strands are cut and the cloth is untied, the cloth be-
comes the union of the seven trapezoids. Our goal is now to compute the
area of one of these trapezoids.
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Each leg of the trapezoid is the hypotenuse of a right triangle with angle 2π
7

and opposite
side 1, so the length of each leg is 1

sin 2π
7

. This means that the short base has length 1
sin 2π

7

as

well.

2π
7

2π
7

1

1

1
sin 2π

7

1
sin 2π

7

1
sin 2π

7

cos 2π
7

sin 2π
7

1
sin 2π

7

cos 2π
7

sin 2π
7

Furthermore, the length of the long base is then

cos 2π
7

sin 2π
7

+
1

sin 2π
7

+
cos 2π

7

sin 2π
7

=
2 cos 2π

7
+ 1

sin 2π
7

.

The height of the trapezoid is 1, so the area of the trapezoid is equal to the average of
the lengths of the bases, which is

1

2

(
1

sin 2π
7

+
2 cos 2π

7
+ 1

sin 2π
7

)
=

cos 2π
7

+ 1

sin 2π
7

.

Using the identity tan θ
2

= sin θ
1+cos θ

, we can simplify this to

cos 2π
7

+ 1

sin 2π
7

= cot
π

7
.

Finally, the entire strip consists of seven of these trapezoids, so the area of the strip, in
square inches, is

7 cot
π

7
.

www.usamts.org


Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer

USA Mathematical Talent Search
Round 3 Solutions

Year 23 — Academic Year 2011–2012
www.usamts.org

4/3/23. Renata the robot packs boxes in a warehouse. Each box is a cube of side length 1
foot. The warehouse floor is a square, 12 feet on each side, and is divided into a 12-by-12
grid of square tiles 1 foot on a side. Each tile can either support one box or be empty. The
warehouse has exactly one door, which opens onto one of the corner tiles.

Renata fits on a tile and can roll between tiles that share a side. To access a box, Renata
must be able to roll along a path of empty tiles starting at the door and ending at a tile
sharing a side with that box.

(a) Show how Renata can pack 91 boxes into the warehouse and still be able to access any
box.

(b) Show that Renata cannot pack 95 boxes into the warehouse and still be able to access
any box.

(a) The following diagram shows that Renata can have access to 91 boxes.

(b) Solution 1: We say that a platform is occupied if it has a box on it, and that a
platform is reachable if it is not occupied and Renata can roll to it from the door. Two
platforms are neighboring if they share a side. We refer to platforms that have 4, 3, or 2
neighboring platforms as interior, edge, and corner platforms, respectively.

Suppose Renata has packed boxes in such a way that she can access any box. Let rI, rE,
and rC be respectively the number of interior, edge, and corner platforms that are reachable,
and let r = rI + rE + rC be the total number of reachable platforms. Let s be the number of
unoccupied platforms that are unreachable. Thus, the number of boxes is 144− r − s.
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Let N be the number of ordered pairs (x, y) of neighboring platforms such that y is
reachable. We count N in two different ways. On one hand,

N =
∑

reachable
platforms y

(# neighbors of y),

which gives us N = 4rI + 3rE + 2rC.

On the other hand, we can write

N =
∑

all plat-
forms x

(# reachable neighbors of x),

then split the terms of this sum into two groups:

N =
∑

occupied
platforms x

(# reachable neighbors of x) +
∑

unoccupied
platforms x

(# reachable neighbors of x).

Each term in the first sum is at least 1, since every box must neighbor a reachable platform.
Thus, the first sum is at least 144 − r − s. To bound the second term, we note that if we
think of the platforms as vertices of a graph with edges connecting neighboring platforms,
then the reachable platforms form a connected subgraph. This subgraph has r vertices, so
it has at least r− 1 edges, making the second sum greater than or equal to 2r− 2 (since this
sum counts pairs of neighboring reachable platforms with order).

Therefore, N ≥ (144− r − s) + (2r − 2) ≥ 142 + r − s. Comparing this to our first way
of counting N , we get

4rI + 3rE + 2rC ≥ 142 + r − s.

Subtracting r from both sides gives

3rI + 2rE + rC ≥ 142− s,

and so
3r = 3rI + 3rE + 3rC ≥ 142− s+ rE + 2rC.

In particular, we have

r + s =
3r + 3s

3
≥ 142 + 2s+ rE + 2rC

3
.

Note that rC ≥ 1, since the platform with the door is reachable, and rE + 2s ≥ 4, since every
corner must either have a reachable neighbor or be unoccupied and unreachable. Thus,

r + s ≥ 148

3
> 49.
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Since r + s is the number of unoccupied platforms, we know there are at least 50 platforms
without boxes, and thus no more than 94 with boxes.

Solution 2: Let f(n) be the maximum number of boxes that Renata can reach, where n
is the number of tiles that she can roll onto. Note that any configuration of the first 3 squares
of the path allows Renata to reach 3 boxes, so f(3) = 4. Each additional square added to
the path allows an increase of at most 2 to the number of reachable boxes: it removes the
box on the path’s added square, but that added square potentially reaches 3 new boxes. So,
f(n) ≤ 2n− 2 for all n ≥ 3. Noting that there are 144 tiles total, we have

f(n) ≤ min {144− n, 2n− 2} =

{
2n− 2 if 3 ≤ n ≤ 48,

144− n if n ≥ 49.

The only positive integer n for which f(n) ≥ 95 is n = 49, so to reach 95 boxes, we must have
a 49-tile path. By the initial construction, such a path could optimally reach 2(49)− 2 = 96
boxes. If we can lower this bound for a 49-tile path by 2, we will have shown that no path
of length 49 can reach 95 or more boxes. Therefore, there exists no path that reaches 95 or
more boxes.

In order for Renata to reach 95 boxes on a 49-tile path, since 95 + 49 = 144, Renata’s
path must contain at least one neighbor of each of the other three corner tiles (either to
access a box on that tile, or to reach that tile in her path). However, whenever Renata adds
one of these three tiles that neighbor a corner to her path, she only increases the number
of reachable squares by at most 1 (the wall of the warehouse taking the place of the second
new reachable tile). Therefore, Renata can reach at most 96 − 3 = 93 tiles from a path of
length 49.

An alternative argument goes as follows. Every time the path branches (that is, a new
square is added to the path anywhere other than at the end of the path), only at most
1 additional box is reached since at least 1 of the three “new” boxes reached by the new
square was already reachable by the path). Every time the path turns a corner, only at most
1 additional box is reached since at least 1 of the three “new” boxes reached by the new
square was again already reachable by the path. Because the warehouse is a 12 × 12 grid,
a 49-square path must turn or branch at least twice after the first three tiles. Such a path
can reach at most 96− 2 = 94 boxes, so a path that reaches 95 boxes is not possible.
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5/3/23. Let k > 2 be a positive integer. Elise and Xavier play a game that has four steps, in
this order.

1. Elise picks 2 nonzero digits (1-9), called e and f .

2. Xavier then picks k nonzero digits (1-9), called x1, . . . , xk.

3. Elise picks any positive integer d.

4. Xavier picks an integer b > 10.

Each player’s choices are known to the other player when the choices are made.

The winner is determined as follows. Elise writes down the two-digit base b number efb.
Next, Xavier writes the k-digit base b number that is constructed by concatenating his digits,

(x1 . . . xk)b.

They then compute the greatest common divisor (gcd) of these two numbers. If this gcd is
greater than or equal to the integer d then Xavier wins. Otherwise Elise wins.

(As an example game for k = 3, Elise chooses the digits (e, f) = (2, 4), Xavier chooses
(4, 4, 8), and then Elise picks d = 100. Xavier picks base b = 25. The base-25 numbers 2425

and 44825 are, respectively, equal to 54 and 2608. The greatest common divisor of these two
is 2, which is much less than 100, so Elise wins handily.)

Find all k for which Xavier can force a win, no matter how Elise plays.

We claim that Xavier has a winning strategy if and only if k is even.

Let k be an even integer. After Elise chooses her digits e and f , Xavier can set his digits
to be x1 = e, x2 = f , x3 = e, x4 = f , . . . , xk−1 = e, and xk = f . Then Elise’s number
efb divides Xavier’s number efef . . . efb, so their greatest common divisor is simply Elise’s
number efb = be+ f .

Then no matter what positive integer d Elise chooses, Xavier can choose an integer b
sufficiently large so that be+ f ≥ d, and Xavier wins.

Now, let k be an odd integer. Elise can start by choosing e = 1 and f = 9. Let Xavier
choose his digits x1, x2, . . . , xk. Let F (t) = t+ 9 and

G(t) = x1t
k−1 + x2t

k−2 + · · ·+ xk−1t+ xk.

Note that F (b) and G(b) are equal to Elise’s number and Xavier’s number in base b, re-
spectively. We will show there exists a constant M such that gcd(F (b), G(b)) < M for all
integers b > 10.
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When the polynomial F (t) is divided into the polynomial G(t), we obtain a quotient Q(t)
and remainder R(t), so

G(t) = F (t)Q(t) +R(t).

Both G(t) and F (t) have integer coefficients, and the leading coefficient of F (t) is 1, so both
Q(t) and R(t) have integer coefficients as well. Furthermore, F (t) is a linear polynomial, so
the remainder R(t) is a constant, say c.

We will show that this constant c is positive. Since F (t) = t + 9, we can set t = −9 in
the equation above, to get

c = G(−9) = x1(−9)k−1 + x2(−9)k−2 + · · ·+ xk−2(−9)2 + xk−1(−9) + xk.

Since k is odd, and each xi is a digit from 1 to 9, this expression is minimized when x1 =
x3 = · · · = xk = 1 and x2 = x4 = · · · = xk−1 = 9. Hence,

c = G(−9)

= x1(−9)k−1 + x2(−9)k−2 + · · ·+ xk−2(−9)2 + xk−1(−9) + xk

≥ (−9)k−1 + 9 · (−9)k−2 + (−9)k−3 + 9 · (−9)k−4 + · · ·+ (−9)2 + 9 · (−9) + 1

= 1.

Therefore, c is positive.

Now, setting t = b in the equation above, we get

G(b) = F (b)Q(b) + c.

Since gcd(F (b), G(b)) divides both F (b) andG(b), gcd(F (b), G(b)) also dividesG(b)−F (b)Q(b) =
c. In particular, gcd(F (b), G(b)) must be less than or equal to c, for any integer b > 10.

Elise can then choose any integer d greater than c (say d = c+ 1). Then no matter what
base b Xavier chooses, gcd(F (b), G(b)) will be less than or equal to c, so it will be less than
d. Thus, Elise has a winning strategy when k is odd.

Credits: Problem 1/3/23 and 5/3/23 proposed by Palmer Mebane.
All other problems and solutions by USAMTS staff.
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